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Lithium-ion batteries are deployed in a wide range of applica-
tions due to their low and falling costs, high energy densities 
and long lifetimes1–3. However, as is the case with many chemi-

cal, mechanical and electronic systems, long battery lifetime entails 
delayed feedback of performance, often many months to years. 
Accurate prediction of lifetime using early-cycle data would unlock 
new opportunities in battery production, use and optimization. For 
example, manufacturers can accelerate the cell development cycle, 
perform rapid validation of new manufacturing processes and sort/
grade new cells by their expected lifetime. Likewise, end users could 
estimate their battery life expectancy4–6. One emerging application 
enabled by early prediction is high-throughput optimization of 
processes spanning large parameter spaces (Supplementary Figs. 1  
and 2), such as multistep fast charging and formation cycling, which 
are otherwise intractable due to the extraordinary time required. 
The task of predicting lithium-ion battery lifetime is critically 
important given its broad utility but challenging due to nonlinear 
degradation with cycling and wide variability, even when control-
ling for operating conditions7–11.

Many previous studies have modelled lithium-ion battery life-
time. Bloom et al.12 and Broussely et al.13 performed early work that 
fitted semi-empirical models to predict power and capacity loss. 
Since then, many authors have proposed physical and semi-empir-
ical models that account for diverse mechanisms such as growth of 
the solid–electrolyte interphase14,15, lithium plating16,17, active mate-
rial loss18,19 and impedance increase20–22. Predictions of remaining 
useful life in battery management systems, summarized in these 
reviews5,6, often rely on these mechanistic and semi-empirical mod-
els for state estimation. Specialized diagnostic measurements such 
as coulombic efficiency23,24 and impedance spectroscopy25–27 can 
also be used for lifetime estimation. While these chemistry and/or 
mechanism-specific models have shown predictive success, devel-
oping models that describe full cells cycled under relevant operating 

conditions (for example, fast charging) remains challenging, given 
the many degradation modes and their coupling to thermal28,29 and 
mechanical28,30 heterogeneities within a cell30–32.

Approaches using statistical and machine-learning techniques 
to predict cycle life are attractive, mechanism-agnostic alternatives. 
Recently, advances in computational power and data generation 
have enabled these techniques to accelerate progress for a variety 
of tasks, including prediction of material properties33,34, identifica-
tion of chemical synthesis routes35 and material discovery for energy 
storage36–38 and catalysis39. A growing body of literature6,40,41 applies 
machine-learning techniques for predicting the remaining useful 
life of batteries using data collected in both laboratory and online 
environments. Generally, these works make predictions after accu-
mulating data corresponding to degradation of at least 25% along 
the trajectory to failure42–48 or using specialized measurements at 
the beginning of life11. Accurate early prediction of cycle life with 
significantly less degradation is challenging because of the typically 
nonlinear degradation process (with negligible capacity degrada-
tion in early cycles) as well as the relatively small datasets used to 
date that span a limited range of lifetimes49. For example, Harris 
et al.10 found a weak correlation (ρ = 0.1) between capacity values 
at cycle 80 and capacity values at cycle 500 for 24 cells exhibiting 
nonlinear degradation profiles, illustrating the difficulty of this task. 
Machine-learning approaches are especially attractive for high-rate 
operating conditions, where first-principles models of degradation 
are often unavailable. In short, opportunities for improving upon 
state-of-the-art prediction models include higher accuracy, earlier 
prediction, greater interpretability and broader application to a 
wide range of cycling conditions.

In this work, we develop data-driven models that accurately 
predict the cycle life of commercial lithium iron phosphate (LFP)/
graphite cells using early-cycle data, with no prior knowledge of 
degradation mechanisms. We generated a dataset of 124 cells with 
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cycle lives ranging from 150 to 2,300 using 72 different fast-charg-
ing conditions, with cycle life (or equivalently, end of life) defined 
as the number of cycles until 80% of nominal capacity. For quanti-
tatively predicting cycle life, our feature-based models can achieve 
prediction errors of 9.1% using only data from the first 100 cycles, at 
which point most batteries have yet to exhibit capacity degradation. 
Furthermore, using data from the first 5 cycles, we demonstrate 
classification into low- and high-lifetime groups and achieve a mis-
classification test error of 4.9%. These results illustrate the power of 
combining data generation with data-driven modelling to predict 
the behaviour of complex systems far into the future.

Data generation
We expect the space that parameterizes capacity fade in lithium-
ion batteries to be high dimensional due to their many capac-
ity fade mechanisms and manufacturing variability. To probe 
this space, commercial LFP/graphite cells (A123 Systems, model 

APR18650M1A, 1.1 Ah nominal capacity) were cycled in a tem-
perature-controlled environmental chamber (30 °C) under var-
ied fast-charging conditions but identical discharging conditions 
(4 C to 2.0 V, where 1 C is 1.1 A; see Methods for details). Since the 
graphite negative electrode dominates degradation in these cells, 
these results could be useful for other lithium-ion batteries based 
on graphite32,50–54. We probe average charging rates ranging from 
3.6 C, the manufacturer’s recommended fast-charging rate, to 6 C 
to probe the performance of current-generation power cells under 
extreme fast-charging conditions (~10 min charging), an area of 
significant commercial interest55. By deliberately varying the charg-
ing conditions, we generate a dataset that captures a wide range of 
cycle lives, from approximately 150 to 2,300 cycles (average cycle 
life of 806 with a standard deviation of 377). While the chamber 
temperature is controlled, the cell temperatures vary by up to 10 °C 
within a cycle due to the large amount of heat generated during 
charge and discharge. This temperature variation is a function of 
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Fig. 1 | Poor predictive performance of features based on discharge capacity in the first 100 cycles. a, Discharge capacity for the first 1,000 cycles of LFP/
graphite cells. The colour of each curve is scaled by the battery’s cycle life, as is done throughout the manuscript. b, A detailed view of a, showing only the 
first 100 cycles. A clear ranking of cycle life has not emerged by cycle 100. c, Histogram of the ratio between the discharge capacity of cycle 100 and that 
of cycle 2. The cell with the highest degradation (90%) is excluded to show the detail of the rest of the distribution. The dotted line indicates a ratio of 
1.00. Most cells have a slightly higher capacity at cycle 100 relative to cycle 2. d, Cycle life as a function of discharge capacity at cycle 2. The correlation 
coefficient of capacity at cycle 2 and log cycle life is −0.06 (remains unchanged on exclusion of the shortest-lived battery). e, Cycle life as a function of 
discharge capacity at cycle 100. The correlation coefficient of capacity at cycle 100 and log cycle life is 0.27 (0.08 excluding the shortest-lived battery). 
f, Cycle life as a function of the slope of the discharge capacity curve for cycles 95–100. The correlation coefficient of this slope and log cycle life is 0.47 
(0.36 excluding the shortest-lived battery).
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internal impedance and charging policy (Supplementary Figs. 3 
and 4). Voltage, current, cell can temperature and internal resis-
tance are continuously measured during cycling (see Methods for 
additional experimental details). The dataset contains approxi-
mately 96,700 cycles; to the best of the authors’ knowledge, our 
dataset is the largest publicly available for nominally identical com-
mercial lithium-ion batteries cycled under controlled conditions 
(see Data availability section for access information).

Fig. 1a,b shows the discharge capacity as a function of cycle 
number for the first 1,000 cycles, where the colour denotes cycle 
life. The capacity fade is negligible in the first 100 cycles and accel-
erates near the end of life, as is often observed in lithium-ion bat-
teries. The crossing of the capacity fade trajectories illustrates the 
weak relationship between initial capacity and lifetime; indeed, 
we find weak correlations between the log of cycle life and the 
discharge capacity at the second cycle (ρ = −0.06, Fig. 1d) and  
the 100th cycle (ρ = 0.27, Fig. 1e), as well as between the log of cycle 
life and the capacity fade rate near cycle 100 (ρ = 0.47, Fig. 1f). 
These weak correlations are expected because capacity degrada-
tion in these early cycles is negligible; in fact, the capacities at cycle 
100 increased from the initial values for 81% of cells in our dataset  
(Fig. 1c). Small increases in capacity after a slow cycle or rest period 
are attributed to charge stored in the region of the negative elec-
trode that extends beyond the positive electrode56,57. Given the lim-
ited predictive power of these correlations based on the capacity  

fade curves, we employ an alternative data-driven approach that 
considers a larger set of cycling data including the full voltage 
curves of each cycle, as well as additional measurements including 
cell internal resistance and temperature.

Machine-learning approach
We use a feature-based approach to build an early-prediction model. 
In this paradigm, features, which are linear or nonlinear transforma-
tions of the raw data, are generated and used in a regularized linear 
framework, the elastic net58. The final model uses a linear combina-
tion of a subset of the proposed features to predict the logarithm 
of cycle life. Our choice of a regularized linear model allows us to 
propose domain-specific features of varying complexity while main-
taining high interpretability. Linear models also have low computa-
tional cost; the model can be trained offline, and online prediction 
requires only a single dot product after data preprocessing.

We propose features from domain knowledge of lithium-ion 
batteries (though agnostic to chemistry and degradation mecha-
nisms), such as initial discharge capacity, charge time and cell can 
temperature. To capture the electrochemical evolution of individ-
ual cells during cycling, several features are calculated based on 
the discharge voltage curve (Fig. 2a). Specifically, we consider the 
cycle-to-cycle evolution of Q(V), the discharge voltage curve as a 
function of voltage for a given cycle. As the voltage range is identi-
cal for every cycle, we consider capacity as a function of voltage, as 
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opposed to voltage as a function of capacity, to maintain a uniform 
basis for comparing cycles. For instance, we can consider the change 
in discharge voltage curves between cycles 20 and 30, denoted  
ΔQ30-20(V) = Q30(V) – Q20(V), where the subscripts indicate cycle 
number. This transformation, ΔQ(V), is of particular interest 
because voltage curves and their derivatives are a rich data source 
that is effective in degradation diagnosis50,51,53,59–64.

The ΔQ(V) curves for our dataset are shown in Fig. 2b using the 
100th and 10th cycles, that is, ΔQ100-10(V). We discuss our selec-
tion of these cycle numbers at a later point. Summary statistics, for 
example minimum, mean and variance, were then calculated for the 
ΔQ(V) curves of each cell. Each summary statistic is a scalar quan-
tity that captures the change in voltage curves between two cycles. 
In our data-driven approach, these summary statistics are selected 
for their predictive ability, not their physical meaning. Immediately, 
a clear trend emerges between cycle life and a summary statistic, 
specifically variance, applied to ΔQ100-10(V) (Fig. 2c).

Because of the high predictive power of features based on  
ΔQ100-10(V), we investigate three different models using (1) only the 
variance of ΔQ100-10(V), (2) additional candidate features obtained 
during discharge and (3) features from additional data streams such 
as temperature and internal resistance. In all cases, data were taken 
only from the first 100 cycles. These three models, each with pro-
gressively more candidate features, were chosen to evaluate both 
the cost–benefit of acquiring additional data streams and the lim-
its of prediction accuracy. The training data (41 cells) are used to 
select the model features and set the values of the coefficients, and 
the primary testing data (43 cells) are used to evaluate the model 
performance. We then evaluate the model on a secondary testing 
dataset (40 cells) generated after model development. Two metrics, 
defined in the ‘Machine-learning model development’ section, are 
used to evaluate our predictive performance: root-mean-squared 
error (RMSE), with units of cycles, and average percentage error.

Performance of early prediction models
We present three models to predict cycle life using increasing 
candidate feature set sizes; the candidate features are detailed in 
Supplementary Table 1 and Supplementary Note 1. The first model, 
denoted as the ‘variance’ model, does not consider subset selec-
tion and uses only the log variance of ΔQ100-10(V) for prediction. 
Surprisingly, using only this single feature results in a model with 
approximately 15% average percentage error on the primary test 
dataset and approximately 11% average percentage error on the sec-
ondary test dataset. We stress the error metrics of the secondary test 
dataset, as these data had not been generated at the time of model 
development and are thus a rigorous test of model performance. The 
second, ‘discharge’ model, considers additional information derived 
from measurements of voltage and current during discharge in the  
first 100 cycles (row blocks 1 and 2 of Supplementary Table 1).  
Of 13 features, 6 were selected. Finally, the third, ‘full’ model con
siders all available features (all rows blocks of Supplementary  
Table 1). In this model, 9 out of 20 features were selected 
(Supplementary Fig. 5). As expected, by adding additional features, 

the primary test average percentage error decreases to 7.5% and  
the secondary test average percentage error decreases slightly 
to 10.7%. The error for the secondary test set is slightly higher 
for the full model when compared with the discharge model 
(Supplementary Note 2 and Supplementary Figs. 6–7). In all cases, 
the average percentage error is less than 15% and decreases to as 
little as 7.5% in the full model, excluding an anomalous cell. Table 1 
and Fig. 3 display the performance of the ‘variance’, ‘discharge’ and 
‘full’ models applied to our three datasets.

We benchmark the performance of our cycle life prediction 
using early-cycle data against both prior literature and naïve mod-
els. A relevant metric is the extent of degradation that has to occur 
before an accurate prediction can be made. In our work, accurate 
prediction was achieved using voltage curves from early cycles cor-
responding to a capacity increase of 0.2% (median) relative to ini-
tial values (with the first and third quartile percentiles being 0.06% 
and 0.34%, respectively; see Fig. 1c). We are unaware of previous 
early-prediction demonstrations that do not require degradation 
in the battery capacity or specialized measurements. In fact, pub-
lished models42–48 generally require data corresponding to at least 
25% capacity degradation before making predictions at an accuracy 
comparable to that of this work. We also benchmark our model 
performance using naïve models, for example univariate models  
and/or models that only utilize information from the capacity 
fade curve (Supplementary Note 3, Supplementary Figs. 8–13 and 
Supplementary Tables 2–3). Notably, if the average cycle life of the 
training data is used for prediction, the average percentage error 
is approximately 30% and 36% for the primary and secondary test 
sets, respectively. Using data from the first 100 cycles, the most 
complex benchmark model using only features from the discharge 
capacity fade curve has errors of 23% and 50% for the primary and 
secondary test sets, respectively. In fact, a similar model that uses 
discharge capacity fade curve data from the first 300 cycles achieves 
comparable performance (27% and 46% for the primary and  
secondary test data, respectively), highlighting the difficulty of  
prediction without using voltage features.

We also consider contexts in which predictions are required at 
very low cycle number but the accuracy requirements are less strin-
gent, such as sorting/grading and pack design applications. As an 
example, we develop a logistic regression model to classify cells into 

Table 1 | Model metrics for the results shown in Fig. 3

RMSE (cycles) Mean percent error (%)

Train Primary test Secondary test Train Primary test Secondary test

‘Variance’ model 103 138 (138) 196 14.1 14.7 (13.2) 11.4

‘Discharge’ model 76 91 (86) 173 9.8 13.0 (10.1) 8.6

‘Full’ model 51 118 (100) 214 5.6 14.1 (7.5) 10.7

Train and primary/secondary test refer to the data used to learn the model and evaluate model performance, respectively. One battery in the test set reaches 80% state-of-health rapidly and does not 
match other observed patterns. Therefore, the parenthetical primary test results correspond to the exclusion of this battery.

Table 2 | Model metrics for the classification setting with a 
cycle life threshold of 550 cycles

Classification accuracy (%)

Train Primary test Secondary test
Variance classifier 82.1 78.6 97.5

Full classifier 97.4 92.7 97.5

Train and primary/secondary test refer to the data used to learn the model and evaluate model 
performance, respectively.
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either a ‘low-lifetime’ or a ‘high-lifetime’ group, using only the first 
five cycles for various cycle life thresholds. For the ‘variance clas-
sifier’, we use only the ΔQ(V) variance feature between the fourth 
and fifth cycles, var(ΔQ5-4(V)), and attain a test classification accu-
racy of 88.8%. For the ‘full classifier’, we use regularized logistic 
regression with 18 candidate features to achieve a test classification 
accuracy of 95.1%. These results are summarized in Table 2 and 
detailed in Supplementary Note 4, Supplementary Fig. 14–17 and 
Supplementary Tables 4–6. This approach illustrates the predictive 
ability of ΔQ(V) even if data from the only first few cycles are used, 
and, more broadly, showcases our flexibility to tailor data-driven 
models to various use cases.

Rationalization of predictive performance
While models that include features from all available data streams 
generally have the lowest errors, our predictive ability primary 
comes from features based on transformations of the voltage curves, 
as evidenced by the performance of the single-feature ‘variance’ 
model. This feature is consistently selected in both models with fea-
ture selection (‘discharge’ and ‘full’). Other transformations of the 
voltage curves can also be used to predict cycle life; for example, the 
full model selects both the minimum and variance of ΔQ100-10(V). 
In particular, the physical meaning of the variance feature is associ-
ated with the dependence of the discharged energy dissipation on 
voltage, which is indicated by the grey region between the voltage 

0

–10

–20

–30

0

–10

–20

–30

0

–10

–20

–30

3.2 3.3 3.4 3.2 3.3 3.4 3.2 3.3 3.4

C/10 C/10 C/10

C/10C/10C/10

4 C 4 C 4 C

4 C4 C4 C

d%
Q

/d
V

 (
%

 V
−

1 )
dV

/d
%
Q

 (
V

 %
−

1 )
dQ

/d
V

 (
A

h 
V

−
1 )

Q
10

1(
V

) 
−

 Q
10

(V
) 

(A
h)

d%
Q

/d
V

 (
%

 V
−

1 )

d%
Q

/d
V

 (
%

 V
−

1 )

Voltage (V) Voltage (V) Voltage (V)

1.0

0.5

0

0

–2

–0.2

–0.4

–4

–6

–8

0

–2

–4

–6

–8

0

–2

–4

–6

–8

0

0.2

–0.2

–0.4

0

0.2

–0.2

–0.4

0

0.2

2.0 2.5 3.0 3.5

Voltage (V)

2.0 2.5 3.0 3.5

Voltage (V)

2.0 2.5 3.0 3.5

Voltage (V)

2.0 2.5 3.0 3.5

Voltage (V)

2.0 2.5 3.0 3.5

Voltage (V)

2.0 2.5 3.0 3.5

Voltage (V)

0 50 100

Percentage normalized capacity

0 50 100

Percentage normalized capacity

0 50 100

Percentage normalized capacity

1.0

0.5

0

1.0

0.5

0

dV
/d

%
Q

 (
V

 %
−

1 )

dV
/d

%
Q

 (
V

 %
−

1 )

dQ
/d
V

 (
A

h 
V

−
1 )

dQ
/d
V

 (
A

h 
V

−
1 )

Q
10

1(
V

) 
−

 Q
10

(V
) 

(A
h)

Q
10

1(
V

) 
−

 Q
10

(V
) 

(A
h)

Cycle 1/10 Cycle 100/101 End of life

Observed cycle life = 1,399
Predicted cycle life = 1,198

Observed cycle life = 425
Predicted cycle life = 404

Observed cycle life = 282
Predicted cycle life = 255

a b c

d e f

g h i

j k l

Fig. 4 | Transformations of voltage–capacity discharge curves for three fast-charged cells that were tested with periodic slow diagnostic cycles.  
a–c, dQ/dV at C/10; d–f, dV/dQ at C/10; g–i, dQ/dV at 4 C; j–l, ΔQ(V) at 4 C. a,d,g,j, 4 C/4 C; b,e,h,k, 6 C/4 C; c,f,i,l, 8 C/4 C. The solid black line is the first 
cycle (cycle 10 for fast cycling), the dotted grey line is cycle 101 or 100 (fast and slow, respectively) and the coloured thick line is the end-of-life cycle 
(80% state-of-health). The colour of the end-of-life cycle is consistent with the colour scale in Figs. 1 and 2. For ΔQ(V), a thin dotted grey line is added 
every 100 cycles. The patterns observed using slow cycling are consistent with LAMdeNE and loss of lithium inventory (Supplementary Fig. 18). The features 
are smeared during fast charging. The log variance ΔQ(V) model dataset predicts the lifetime of these cells within 15%.

Nature Energy | VOL 4 | MAY 2019 | 383–391 | www.nature.com/natureenergy 387

http://www.nature.com/natureenergy


Articles NATUre Energy

curves in Fig. 2a. The integral of this region is the total change in 
energy dissipation between cycles under galvanostatic conditions 
and is linearly related to the mean of ΔQ(V). Zero variance would 
indicate energy dissipations that are independent of voltage. Thus, 
the variance of ΔQ(V) reflects the extent of non-uniformity in the 
energy dissipation with voltage, due to either open-circuit or kinetic 
processes, a point that we return to later.

We observe that features derived from early-cycle discharge volt-
age curves have excellent predictive performance, even before the 
onset of capacity fade. We rationalize this observation by investigat-
ing degradation modes that do not immediately result in capacity 
fade yet still manifest in the discharge voltage curve and are also 
linked to rapid capacity fade near the end of life.

While our data-driven approach has successfully revealed pre-
dictive features from early-cycle discharge curves, identification 
of degradation modes using only high-rate data is challenging 
because of the convolution of kinetics with open-circuit behaviour. 
Thus, we turn to established methods for mechanism identification 
using low-rate cycling data. Dubarry et al.61 mapped degradation 
modes in LFP/graphite cells to their resultant shift in dQ/dV and 
dV/dQ derivatives for diagnostic cycles at C/20. One degradation 
mode—loss of active material of the delithiated negative electrode 
(LAMdeNE)—results in a shift in discharge voltage with no change 
in capacity. This behaviour is observed when the negative elec-
trode capacity is larger than that of the positive electrode, as is the 
case in these LFP/graphite cells. Thus, a loss of delithiated nega-
tive electrode material changes the potentials at which lithium ions 
are stored without changing the overall capacity50,61. As proposed 
by Anséan et al.50, at high rates of LAMdeNE, the negative electrode 
capacity will eventually fall below the remaining lithium-ion inven-
tory. At this point, the negative electrode will not have enough sites 
to accommodate lithium ions during charging, inducing lithium 
plating50. Since plating is an additional source of irreversibility, the 
capacity loss accelerates. Thus, in early cycles, LAMdeNE shifts the 
voltage curve without affecting the capacity fade curve and induces 
rapid capacity fade at high cycle number. This degradation mode, 

in conjunction with loss of lithium inventory, is widely observed 
in commercial LFP/graphite cells operated under similar condi-
tions32,50–54. We note that the graphitic negative electrode is common 
to nearly all commercial lithium-ion batteries in use today.

To investigate the contribution of LAMdeNE, we perform addi-
tional experiments for cells cycled with varied charging rates (4 C, 
6 C and 8 C) and a constant discharge rate (4 C), incorporating slow 
cycling at the 1st, 100th and end-of-life cycles. Derivatives of diag-
nostic discharge curves at C/10 (Fig. 4, rows 1 and 2) are compared 
with these, and ΔQ(V), at 4 C at the 10th, 101st and end-of-life 
cycles (rows 3 and 4). The shifts in dQ/dV and dV/dQ observed in 
diagnostic cycling correspond to a shift of the potentials at which 
lithium is stored in graphite during charging and are consistent 
with LAMdeNE and loss of lithium inventory operating concurrently 
(Supplementary Fig. 18)50,51,61. The magnitude of these shifts from 
the 1st to 100th cycle increases with charging rate (Supplementary 
Note 5 and Supplementary Fig. 19). These observations rationalize 
why models using features based on discharge curves have lower 
errors than models using only features based on capacity fade 
curves, since LAMdeNE does not manifest in capacity fade in early 
cycles. We note that LAMdeNE alters a fraction of, rather than the 
entire, discharge voltage curve, consistent with the strong correla-
tion between the variance of ΔQ(V) and cycle life (Fig. 2c). In sum-
mary, we attribute the success of our predictive models to features 
that capture changes in both the capacity fade curves and voltage 
curves, since degradation may be silent in discharge capacity but 
present in voltage curves.

As noted above, differential methods such as dQ/dV and dV/dQ 
are used extensively to pinpoint degradation mechanisms50,51,53,59–61. 
These approaches require low-rate diagnostic cycles, as higher 
rates smear out features due to heterogeneous de(intercalation)32, 
as seen by comparing row 1 with row 3 in Fig. 4. However, these 
diagnostic cycles often induce a temporary capacity recovery, 
commonly observed in cells when the geometric area of the nega-
tive electrode exceeds that of the positive electrode56,57. As such,  
they interrupt the trajectory of capacity fade (Supplementary  
Fig. 20). Therefore, by applying summary statistics to ΔQ(V) col-
lected at high rate, we simultaneously avoid both low-rate diagnostic  
cycles and numerical differentiation, which decreases the signal-
to-noise ratio65. However, these high-rate discharge voltage curves 
can additionally reflect both kinetic degradation modes and het-
erogeneities that are not observed in dQ/dV and dV/dQ curves at 
C/10. We consider the influence of kinetic degradation modes in 
Supplementary Note 6, Supplementary Fig. 21 and Supplementary 
Tables 7–8); briefly, we estimate that low-rate modes such as 
LAMdeNE primarily contribute (50–80%) to ΔQ(V). We also men-
tion that low-rate degradation modes such as LAMdeNE influence 
the kinetics at high rate, in this case by increasing the local current 
density of the active regions.

Finally, additional analysis was performed to understand the 
impact of the cycle indices chosen for ΔQ(V) features in the regres-
sion setting. Univariate linear models using only the variance of 
Qi(V) – Qj(V) for the training and primary testing datasets were 
investigated and are displayed in Fig. 5. We find that the model is 
relatively insensitive to the indexing scheme for i > 60, suggesting 
that quantitative cycle life prediction using even earlier cycles is 
possible. This trend is further validated by the model coefficients 
shown in Supplementary Fig. 22. We hypothesize that the insensi-
tivity of the model to the indexing scheme implies linear degrada-
tion with respect to cycle number, which is often assumed for LAM 
modes50,61. Relative indexing schemes based on cycles in which a 
specified capacity fade was achieved were also investigated and did 
not result in improved predictions. Furthermore, because the dis-
charge capacity initially increases, specified decreases in capacity 
require more cycles to develop than fixed indexing (Supplementary 
Note 7 and Supplementary Figs. 23–25).
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Fig. 5 | Prediction error as a function of cycle indices. RMSE error, in units 
of cycles, is presented for training (a) and testing (b) datasets using only 
the log variance of ΔQi-j(V), where indices i and j are varied. These errors 
are averaged over 20 random partitions of the data into equal training and 
testing datasets. The errors are relatively flat after cycle 80. The increases 
in error around cycles j = 55 and i = 70 are due to temperature fluctuations 
of the environmental chamber (see Supplementary Fig. 25).
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Conclusions
Data-driven modelling is a promising route for diagnostics and 
prognostics of lithium-ion batteries and enables emerging applica-
tions in their development, manufacturing and optimization. We 
develop cycle life prediction models using early-cycle discharge data 
yet to exhibit capacity degradation, generated from commercial 
LFP/graphite batteries cycled under fast-charging conditions. In the 
regression setting, we obtain a test error of 9.1% using only the first 
100 cycles; in the classification setting, we obtain a test error of 4.9% 
using data from the first 5 cycles. This level of accuracy is achieved 
by extracting features from high-rate discharge voltage curves as 
opposed to only from the capacity fade curves, and without using 
data from slow diagnostic cycles or assuming prior knowledge of 
cell chemistry and degradation mechanisms. The success of the 
model is rationalized by demonstrating consistency with degrada-
tion modes that do not manifest in capacity fade during early cycles 
but impact the voltage curves. In general, our approach can comple-
ment approaches based on physical and semi-empirical models and 
on specialized diagnostics. Broadly speaking, this work highlights 
the promise of combining data generation and data-driven mod-
elling for understanding and developing complex systems such as 
lithium-ion batteries.

Methods
Cell cycling and data generation. 124 commercial high-power LFP/graphite  
A123 APR18650M1A cells were used in this work. The cells have a nominal 
capacity of 1.1 Ah and a nominal voltage of 3.3 V. The manufacturer’s 
recommended fast-charging protocol is 3.6 C constant current–constant voltage 
(CC-CV). The rate capability of these cells during charge and discharge is shown  
in Supplementary Fig. 27.

All cells were tested in cylindrical fixtures with four-point contacts on 
a 48-channel Arbin LBT battery testing cycler. The tests were performed 
at a constant temperature of 30 °C in an environmental chamber (Amerex 
Instruments). Cell can temperatures were recorded by stripping a small section 
of the plastic insulation and contacting a type T thermocouple to the bare metal 
casing using thermal epoxy (OMEGATHERM 201) and Kapton tape.

The cells were cycled with various candidate fast-charging policies 
(Supplementary Table 9) but identically discharged. Cells were charged from 
0% to 80% state-of-charge (SOC) with one of 72 different one-step and two-step 
charging policies. Each step is a single C rate applied over a given SOC range; 
for example, a two-step policy could consist of a 6 C charging step from 0% to 
50% SOC, followed by a 4 C step from 50% to 80% SOC. The 72 charging polices 
represent different combinations of current steps within the 0% to 80% SOC range. 
The charging time from 0% to 80% SOC ranged from 9 to 13.3 min. An internal 
resistance measurement was obtained during charging at 80% SOC by averaging 10 
pulses of ±3.6 C with a pulse width of 30 or 33 ms, where 1 C is 1.1 A, or the current 
required to fully (dis)charge the nominal capacity (1.1 Ah) in 1 h. All cells then 
charged from 80% to 100% SOC with a uniform 1 C CC-CV charging step to 3.6 V 
and a current cutoff of C/50. All cells were subsequently discharged with a CC-CV 
discharge at 4 C to 2.0 V with a current cutoff of C/50. The voltage cutoffs used in 
this work follow those recommended by the manufacturer.

Our dataset is described in Supplementary Table 9. In total, our dataset  
consists of three ‘batches’, or cells run in parallel. Each batch has slightly different 
testing conditions. For the ‘2017-05-12’ batch, the rests after reaching 80% SOC 
during charging and after discharging were 1 min and 1 s, respectively. For the 
‘2017-06-30’ batch, the rests after reaching 80% SOC during charging and after 
discharging were both 5 min. For the ‘2018-04-12’ batch, 5 s rests were placed after 
reaching 80% SOC during charging, after the internal resistance test and before 
and after discharging.

A histogram of cycle life for the three datasets is presented in Supplementary 
Fig. 28. We note that four cells had unexpectedly high measurement noise and 
were excluded from analysis.

To standardize the voltage–capacity data across cells and cycles, all 4 C 
discharge curves were fitted to a spline function and linearly interpolated 
(Supplementary Fig. 29). Capacity was fitted as a function of voltage and evaluated 
at 1,000 linearly spaced voltage points from 3.5 V to 2.0 V. These uniformly sized 
vectors enabled straightforward data manipulations such as subtraction.

Machine-learning model development. This study involved both model fitting 
(setting the coefficient values) and model selection (setting the model structure). 
To perform these tasks simultaneously, a regularization technique was employed.  
A linear model of the form

ŷ = ŵ x (1)i i
T

was proposed, where ŷi is the predicted number of cycles for battery i, xi is a 
p-dimensional feature vector for battery i and ŵ is a p-dimensional model 
coefficient vector. When applying regularization techniques, a penalty term is 
added to the least-squares optimization formulation to avoid overfitting. Two 
regularization techniques, the lasso66 and the elastic net58, simultaneously perform 
model fitting and selection by finding sparse coefficient vectors. The formulation is

λ̂ = ∥ − ∥ + Pw y Xw wargmin ( ) (2)w 2
2

where the argmin function represents finding the value of w that minimizes the 
argument, y is the n-dimensional vector of observed battery lifetimes, X is the n × p 
matrix of features, and λ is a non-negative scalar. The first term

∥ − ∥y Xw (3)2
2

is found in ordinary least squares. The formulation of the second term, P(w), 
depends on the regularization technique being employed. For the lasso,

= ∥ ∥P w w( ) , (4)1

and for the elastic net,

α α= − ∥ ∥ + ∥ ∥P w w w( ) 1
2

(5)2
2

1

where α is a scalar between 0 and 1. Both formulations will result in sparse models. 
The elastic net has been shown to perform better when p » n58, as is often the case in 
feature engineering applications, but requires fitting an additional hyperparameter 
(α and λ, as opposed to only λ in the lasso). The elastic net is also preferred when 
there are high correlations between the features, as is the case in this application. To 
choose the values of the hyperparameters, we apply four-fold cross-validation and 
Monte Carlo sampling.

The model development dataset is divided into two equal sections, referred 
to as the training and primary testing sets. These two sections are chosen such 
that each spans the range of cycle lives (see Supplementary Table 9). The training 
data are used to choose the hyper-parameters α and λ and determine the values of 
the coefficients, w. The training data are further subdivided into calibration and 
validation sets for cross-validation. The primary test set is then used as a measure of 
generalizability. The secondary test dataset was generated after model development.

RMSE and average percentage error are chosen to evaluate model performance. 
RMSE is defined as

∑ ŷ= −
=n

yRMSE 1 ( ) (6)
i

n

i i
1

2

where yi is the observed cycle life, ŷi is the predicted cycle life and n is the total 
number of samples. The average percentage error is defined as

∑
ŷ

=
∣ − ∣

×
=n

y
y

% err 1 100 (7)
i

n
i i

i1

where all variables are defined as above.
To summarize our procedure, we first divide the data into training and test sets. 

We then train the model on the training set using the elastic net, yielding a linear 
model with downselected features and coefficients. Finally, we apply the model to 
the primary and secondary test sets.

The data processing and elastic net prediction is performed in MATLAB,  
while the classification is performed in Python using the NumPy, pandas and 
sklearn packages.

Data availability
The datasets used in this study are available at https://data.matr.io/1.

Code availability
Code for data processing is available at https://github.com/rdbraatz/data-driven-
prediction-of-battery-cycle-life-before-capacity-degradation. Code for the 
modelling work is available from the corresponding authors upon request.
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