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Abstract

We propose a generalization of the best arm
identification problem in stochastic multi-
armed bandits (MAB) to the setting where
every pull of an arm is associated with delayed
feedback. The delay in feedback increases the
effective sample complexity of standard algo-
rithms, but can be offset if we have access
to partial feedback received before a pull is
completed. We propose a general framework
to model the relationship between partial and
delayed feedback, and as a special case we in-
troduce efficient algorithms for settings where
the partial feedback are biased or unbiased
estimators of the delayed feedback. Addi-
tionally, we propose a novel extension of the
algorithms to the parallel MAB setting where
an agent can control a batch of arms. Our
experiments in real-world settings, involving
policy search and hyperparameter optimiza-
tion in computational sustainability domains
for fast charging of batteries and wildlife cor-
ridor construction, demonstrate that exploit-
ing the structure of partial feedback can lead
to significant improvements over baselines in
both sequential and parallel MAB.

1 INTRODUCTION

Intelligent agents often need to interact with the en-
vironment and make rational decisions that optimize
for a suitable objective. One such setting that com-
monly arises is the best arm identification problem in
stochastic multi-armed bandits [Bubeck et al., 2009,
Audibert and Bubeck, 2010]. In a multi-armed bandit
(MAB) problem, an agent is given a set of n finite
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actions (or arms), each associated with a reward drawn
from an arm-specific probability distribution. In a pure
exploration setting, the goal is to reliably identify the
top-k arms while minimizing the exploration cost. This
problem has numerous applications, including optimal
experimental design.

We consider a new variant of this problem where the
feedback rewards are received after a delay. Delayed
feedback is common in the real-world. For instance,
hypothesis testing in science and engineering often suf-
fers from delayed feedback since they involve expensive,
time-consuming experiments. In one of the motivat-
ing applications of this work we want to search over
fast-charging policies for electrochemical batteries to
maximize lifetime, overcoming the difficulties posed
due to lengthy experiments. Even within the field of
machine learning, finding the best hyperparameter set-
tings for a given learning algorithm and dataset can be
modeled as a best arm identification problem involving
a non-trivial delay [Jamieson and Talwalkar, 2016].

However, many scenarios of interest are not complete
black-boxes during the intermediate time steps before
receiving a delayed feedback reward. Depending on the
application, we often have access to side-information
in the form of partial feedback that can aid decision
making. These could be extra measurements such as
temperature and remaining capacity while charging
batteries in the aforementioned scenario, or learning
curves for hyperparameter optimization.

In this work, we propose a general-purpose framework
for modeling delayed feedback in MAB, and take a
deeper dive into several practically relevant instantia-
tions. In particular, we design and analyze algorithms
for best arm identification in the fixed confidence set-
ting where the partial feedback are biased or unbiased
estimators of the delayed feedback. Our proposed al-
gorithms adaptively tune the mean and confidence
estimates wherever the partial feedback reduces the
overall uncertainty. We also extend these algorithms to
the parallel MAB setting where we are allowed to pull
a batch of arms at every time step [Jun et al., 2016].
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Finally, we empirically validate the proposed algorithms
on simulated data and real world datasets drawn from
two domains. The first corresponds to experimental
design for finding the optimal charging policy for a
battery that maximizes overall lifetime [Moura et al.,
2017]. In the second domain, we perform hyperparam-
eter optimization for finding the best cut strategy for a
standard mixed integer programming solver with perfor-
mance tested on a benchmark set of problem instances
drawn from computational sustainability [Gomes et al.,
2008]. Our experiments demonstrate that accounting
for partial feedback can reduce the delayed sample com-
plexity on average by 15.6% and 80.8% for sequential
MAB over baselines for the two application scenar-
ios respectively. The corresponding average savings
over baselines for parallel MAB are 20.7% and 87.6%
respectively.

2 BACKGROUND & MODELING
FRAMEWORK

The chief workhorse of our analysis will be the law of
iterated logarithms (LIL) that analyzes the limiting
behavior of random walks (sequence of pulls for a given
arm in our case) defined over sub-Gaussian random
variables [Darling and Robbins, 1967]. Several finite
LIL bounds have been proposed in the literature; we
consider the one proposed by Zhao et al. [2016] which
has been shown to outperform others empirically while
retaining the same asymptotic behavior. Alternate
bounds, such as the one by Jamieson et al. [2014],
could also be used with no effect on the theoretical
analysis of this work.

Lemma 1. Let X(1), X(2), . . . be i.i.d. sub-Gaussian
random variables with scale parameter σ and mean µ.
Let τ be any random variable with domain N. For any
c > 1, 2a > c, b > 0, the following holds with probability
at least 1− 2ζ(2a/c)e−2b/c:∣∣∣∣∣1τ

τ∑
l=1

X(l) − µ
∣∣∣∣∣ ≤ σ

√
a log(logc τ + 1) + b

τ

where ζ denotes the Riemannian zeta function. The
constants in Lemma 1 are chosen such that the lemma
holds for a target confidence. To simplify the notation,
we denote the the error probability by δ′ and the right
hand side of Lemma 1 by C (σ, τ, δ′) such that the
following holds with probability 1− δ′ for any τ ∈ N:∣∣∣∣∣1τ

τ∑
l=1

X(l) − µ
∣∣∣∣∣ ≤ C (σ, τ, δ′) . (1)

We consider a stochastic multi-armed bandit (MAB)
problem characterized by a set of n arms, indexed

by i = 1, . . . , n. Each arm is associated with a fixed,
unknown probability distribution with means {µi}ni=1.
We assume that the means are unique. Without loss
of generality, assume that the arm indices are sorted
as per the means, such that µ1 > µ2 > . . . > µn.

We are interested in the pure exploration setting, also
known as the best arm identification problem, where
the goal of an agent is to identify the top-k arms (with
the highest means) with a target confidence 1− δ while
minimizing the total time spent on exploration. Explo-
ration in our setting, however, is not the same across
the pulls of a given arm. In particular, we assume that
each pull of an arm is associated with an unknown
(stochastic) delay that contributes to the total explo-
ration time. The presentation in this section assumes a
sequential MAB setting where the agent can pull/run
only one arm at a given time step; the alternate parallel
MAB setting where an agent can control a “batch” of
arms at once is discussed in Section 4 [Perchet et al.,
2015, Wu et al., 2015, Jun et al., 2016].

Formally, the stochastic data generating process with
delayed feedback can be described as follows. At any
given start time ts:

1. Agent chooses an arm i.

2. Nature samples a delay Ds ≥ 1 from an (unknown)
arm specific delay distribution.

3. Nature samples a sequence of partial feedback,
(Yi,ts+1, . . . , Yi,ts+Ds) | Ds jointly. The joint
distribution of the partial feedback depends on µi.

In general, the delay and partial feedback
sequence are unknown to the agent at time ts.

At time ts + ∆ where ∆ ∈ [1, Ds],

4. Nature reveals Yi,ts+∆ to the agent.
If ∆ = Ds, the agent goes to step 1. Otherwise,
the agent decides whether to continue the current
pull (step 4) or start another pull (step 1) in which
case any remaining partial feedback for the current
pull will not be observed.

The agent and nature continue to play the above game
until the agent has selected a set of candidate top-k
arms. The delay Ds can contribute significantly to the
total time spent on exploration. Under appropriate
assumptions however, we can exploit the structure in
the partial feedback to significantly reduce the overall
exploration cost of delayed feedback. The data generat-
ing process described above is very general and one can
make many natural assumptions on the distribution of
the partial feedback (Yi,ts+1, · · · , Yi,ts+Ds) | Ds.
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For instance, we can model the following scenarios:

• Full delayed feedback: The partial feedback at
the last delay, Yi,ts+Ds is sub-Gaussian with mean
µi and scale parameter σi. For the intermediate
time steps, ∆ ∈ [1, Ds − 1], we have Yi,ts+∆ = 0,
and hence, we receive no information about µi at
these time steps.

• Incremental partial feedback: The set of par-
tial feedback Yi,ts+∆ for every time step ∆ ∈
[1, Ds] consists of mutually independent, sub-
Gaussian random variables with mean µi/Ds and
scale parameter σi/

√
Ds. Hence, the cumulative par-

tial feedback
∑Ds

∆=1 Yi,ts+∆ is also sub-Gaussian
with mean µi and scale parameter σi.

• Unbiased noisy partial feedback: The partial
feedback at the last delay, Yi,ts+Ds is sub-Gaussian
with mean µi and scale parameter σi. For the in-
termediate time steps, ∆ ∈ [1, Ds − 1], the set
of partial feedback Yi,ts+∆ | Yi,ts+Ds − Yi,ts+Ds
consists of mutually independent, sub-Gaussian
random variables with zero mean and scale param-

eter σ
(p)
i .

• Biased noisy partial feedback: The partial
feedback at the last delay, Yi,ts+Ds is sub-Gaussian
with mean µi and scale parameter σi. For the in-
termediated time steps, ∆ ∈ [1, Ds − 1], the set
of partial feedback Yi,ts+∆ | Yi,ts+Ds − Yi,ts+Ds
consists of mutually independent, sub-Gaussian
random variables with mean bi and scale param-

eter σ
(p)
i . Here, bi is a fixed, but unknown bias

associated with the partial feedback for the arm.

Note that the standard MAB setting where we ob-
serve the feedback at the immediate next time step
is a special case of the full delayed feedback with a
constant delay Ds = 1 for every pull. In fact, the
algorithms for best arm identification in the full de-
layed and incremental partial feedback settings can be
derived naturally from the standard MAB algorithms
with no delays. Specifically, the agent can simply chose
to ignore the time instants at which delayed feedback
is unavailable for the full delayed feedback setting. The
sample complexity of any such algorithm is hence the
number of arm pulls required in the standard MAB
setting weighted by the delay of every pull. These
settings are still interesting for parallel MAB where
information can be shared across arms; we discuss this
case in Section 4.

The partial feedback settings, however, present an inter-
esting scenario where the agent can extract information
from noisy feedback. For such settings, we propose
modified algorithms based on racing-style procedures

Algorithm 1 RacingSubroutines

function UpdateArmSets(arm sets A, R, S, top k,
confidence bounds {LCBi, UCBi}i∈S)

Initialize kt ← k − |A|.
Update A← A ∪ {i ∈ S | LCBi > max

(kt+1)
j∈S UCBj}.

UpdateR← R ∪ {i ∈ S | UCBi < max
(kt)
j∈S LCBj}.

Update S ← S\{R ∪A}.
return A, R, S.

end function

function GetBatchArms(surviving arms S, counts
{Ni, ai}i∈S , effective batch size e, limit r)

Initialize new arm pulls m← 0 ∈ Rn.
for slot s = {1, · · · ,min (e, |S|r)} do

Least pulled arm j ← arg mini∈S:ai≤rNi
Update aj ← aj + 1.
Update mj ← mj + 1.
Update Nj ← Nj + 1.

end for
return m, {Ni}i∈S , {ai}i∈S

end function

typically used for the standard MAB setting [Maron
and Moore, 1994]. Typically, racing algorithms main-
tain three disjoint arm sets: accepted arms A, rejected
arms R, and surviving arms S. Initially, all arms are
assigned to the surviving set S. Racing procedures
uniformly sample arms while removing them from the
surviving set based on confidence bounds. For conve-
nience, define the lower confidence bounds (LCB) and
upper confidence bounds (UCB) for every arm i as:

LCBi := µ̂i − Ci (2)

UCBi := µ̂i + Ci (3)

where µ̂i is the empirical mean of the feedback for
arm i and the confidence bound Ci will depend on
the particular racing algorithm under consideration.
Let kt := k − |A| be the effective number of top arms
remaining to be identified at a time step t. Each time
we receive a feedback reward (full or partial), the racing
procedures update these sets based on the rule that
any arm in S whose LCB is greater than the UCB
of |S| − kt arms is accepted. Similarly, any arm in S
whose UCB is less than the LCB of kt arms is rejected.
The racing procedure is repeated until S is empty. The
pseudocode for the subroutine that updates the arm
sets is given in Algorithm 1.

3 SEQUENTIAL MAB

In sequential MAB, we assume that the agent can
receive (partial) feedback from only a single arm pull
at any given time step, e.g., we can only perform one
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experiment at a time. We skip a separate discussion on
the trivial full feedback (and the related incremental
feedback) setting and discuss it only in the context
of the noisy feedback settings. For convenience, we
denote the partial feedback at the last delay as Xi,ts =
Yi,ts+Ds . Here, Xi,ts is a sub-Gaussian random variable
with mean µi and scale parameter σi. The proofs of
all results in this section are given in the Appendix.

3.1 Unbiased noisy partial feedback

In this setting, an agent has access to unbiased partial
feedback at the intermediate time steps before receiv-
ing the full delayed feedback. In the following result,
we derive a variation of the finite LIL bound for the
unbiased partial feedback setting.

Proposition 1. Let {Yi,t1+1, Yi,t1+2, . . . , Yi,t1+D1
,

Yi,t2+1, . . . , Yi,t2+D2
, . . .} denote the partial feedback

sequences for the pulls of an arm i started at time
steps t1, t2, . . . and delays D1, D2, . . .. Then, under
the distributional assumptions on the unbiased partial
feedback (see Section 2) for any F ∈ N, P ∈ [1, DF ],
δf > 0, δp > 0, we have with probability 1− δf − δp:∣∣∣∣∣∣ 1

F

F−1∑
f=1

Xi,tf +
1

P

P∑
l=1

Yi,tF+l

− µi
∣∣∣∣∣∣

≤ C (σi, F, δf/n) +
1

F
C
(
σ

(p)
i , P, δp/n

)
∀i ∈ [1, n] (4)

where Xi,tf = Yi,tf+Df by definition. At any inter-
mediate time step between the the start and end of
the F -th arm pull, Proposition 1 adaptively “splits”
the confidence bounds pertaining to the full delayed
feedback for F steps (first term in the RHS) and the
partial delayed feedback for the F -th arm pull (second
term in the RHS). Contrast this with the full delayed
feedback setting where the following confidence bound
holds with probability 1− δ:∣∣∣∣∣∣ 1

F − 1

F−1∑
f=1

Xi,tf − µi

∣∣∣∣∣∣ ≤ C (σi, F − 1, δ/n)∀i ∈ [1, n]

(5)

To obtain the same target confidence in the two cases
above, we constrain δ = δf + δp. Solving for the op-
timal δ∗f , δ

∗
p that minimize the RHS of Eq. (4) under

the constraint due to δ corresponds to a convex opti-
mization problem that can be solved in closed form.
Comparing the mean estimators in Eq. (4) and Eq. (5),
we note that the agent can only use the full delayed
feedback up till the (F − 1)-th arm pull while waiting
for the outcome of the F -th arm pull in the latter case
while the former dynamically incorporates the partial
feedback observed for the F -th arm pull.

Algorithm 2 RacingUnbiasedPF (arm parameters

{i, σi, σ(p)
i }ni=1, top k, confidence δ)

1: Initialize global time step t = 0, surviving S =
{i}ni=1, accepted A = {}, rejected R = {}.

2: Initialize per-arm full delayed feedback counter
Fi = 0, empirical means µ̂i = 0, confidence bounds
LCBi = −∞, UCBi =∞ for all i ∈ S.

3: while S is not empty do
4: while True do
5: Increment t← t+ 1.
6: Collect partial feedback Ya,t.

7: Update µ̂(p) ← (Pµ̂(p)+Ya,t)
(P+1) .

8: Increment P ← P + 1.
9: Set C(partial) ← C(σa, Fa + 1, δ

∗
f/n) +

C(σ(p)
a ,p,δ∗p/n)
Fa+1 .

10: Choose FOrP← arg min
(
C(σa, Fa, δ/n), C(partial)

)
.

11: Update Ca ← C(σa, Fa, δ/n) if FOrP = F else C(partial).
12: Update µ̂a ← µ̂(f) if FOrP = F else Faµ̂

(f)+µ̂(p)

Fa+1 .
13: Update LCBa, UCBa.
14: A,R, S ← UpdateArmSets(A,R, S, k, {LCBi, UCBi)}i∈S).
15: if P = Da,ta or a 6∈ S then
16: Break . Pull on termination/elimination
17: end if
18: end while
19: Pull arm a where a← arg mina∈S Fa.
20: Initialize start ta ← t, partial feedback counter

P = 0, partial mean µ̂(p) = 0, full mean µ̂(f) ← µ̂i.
21: end while
22: return A

Based on the above analysis, we propose a racing algo-
rithm for the unbiased partial feedback setting with the
psuedocode given in Algorithm 2. At any intermediate
time step, the agent chooses a mean estimator and a
confidence bound for the current arm (Lines 10-13).
The choice corresponds to the tighter confidence bound
obtained either by optimizing Eq. (4) over δp, δf or the
one obtained by Eq. (5) where only the full delayed
feedback are considered. Thereafter, the agent invokes
the racing subroutine that checks whether a surviving
arm can be rejected or accepted (Line 14). If the pull
has finished running or the current arm is itself elimi-
nated (Line 15), the agent pulls a new arm in the next
time step which has the least number of full delayed
feedback (Line 19).

We can make some observations about Algorithm 2.
First, we see that an agent adopting the proposed al-
gorithm can never do worse than the alternate racing
strategy that considers estimates only based on the
full delayed feedback. This is because even at the in-
termediate time steps, the agent considers the mean
estimator corresponding to the smaller of the two con-
fidence bounds, which can only reduce the delayed
sample complexity of the algorithm. Whenever an arm
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Algorithm 3 BatchRacingFullDF(arm parameters
{i, σi}ni=1, top k, confidence δ, batch b, limit r)

1: Initialize global time step t = 0, pull status counts
running = 0, surviving arms S = {i}ni=1, accepted
arms A = {}, rejected arms R = {}.

2: Initialize per-arm global pull counts Ni = 0, run-
ning pull counts ai = 0, full delayed feedback
Fi = 0, empirical means µ̂i = 0, confidence bounds
LCBi = −∞, UCBi =∞ for all i ∈ S.

3: while S is not empty do
4: if running > 0 then
5: Increment t← t+ 1.
6: Collect batch full delayed feedback Y .
7: for all Yh,t ∈ Y do
8: Update µ̂h ← (Fhµ̂

(f)+Yh,t)/(Fh+1).
9: Increment Fh ← Fh + 1.

10: Update LCBh, UCBh.
11: Decrement ah ← ah − 1.
12: end for
13: if Y is not empty then
14: A,R, S ← UpdateArmSets(A,R, S, k, {LCBi, UCBi}i∈S).
15: Decrement running← running − |Y |.
16: end if
17: end if
18: Update arms m, counts {Ni, ai}i∈S ←

GetBatchArms(S, {Ni, ai}i∈S , b− running, r).
19: Pull every arm j ∈m mj times.
20: Update running← running +

∑
j∈mmj .

21: end while
22: return A

pull has finished, the agent also updates the mean and
confidence interval by an arithmetic averaging over only
the full delayed feedback. Using partial feedback is im-
practical at such time steps since the partial feedback
only introduce noise and do not provide any additional
information about the true mean.

If the maximum possible delay associated with any
arm pull is given by Dmax, then we can trivially ex-
tend bounds for the sample complexity of racing style
procedures [Jamieson and Nowak, 2014] to derive simi-
lar bounds on the delayed sample complexity with an
extra multiplicative factor of Dmax.1 This is similar to
what one would expect from the full delayed feedback
setting and is not surprising for Algorithm 2 since in
the absence of any additional assumptions, the par-
tial feedback could be completely uninformative and
the algorithm will choose to ignore them. We believe
domain-specific assumptions about the delay distribu-
tion and the noise associated with the partial feedback
as a function of time could lead to a tighter analysis

1The delayed sample complexity for an algorithm refers
to the total number of time steps (including delays) before
termination.

and is an interesting direction of future work. The
correctness of Algorithm 2 can be summarized below.

Theorem 1. Assuming the delay associated with any
arm pull is bounded, then Algorithm 2 outputs the top-k
arms with probability at least 1− δ.

To get further intuition about the working of Algo-
rithm 2, consider the situation where all arms have
been pulled once except one. When the last remaining
arm is pulled for the first time, the full delayed feed-
back setting will necessarily have to wait for the pull to
finish running before eliminating the arms whereas Al-
gorithm 2 can potentially start eliminating arms right
after the first partial delayed feedback is received.

3.2 Biased noisy partial feedback

The partial feedback at the intermediate time steps
before a full delayed feedback can also correspond to
biased estimates of the full delayed feedback. Although
the bias for the arms is unknown, it can be estimated
empirically based on differences in the full delayed
feedback and the partial feedback at the corresponding
intermediate time steps. Formally, we assume the bias
for a particular arm is an unknown constant bi and
derive the following LIL bounds.

Proposition 2. Let {Yi,t1+1, Yi,t1+2, . . . , Yi,t1+D1
,

Yi,t2+1, . . . , Yi,t2+D2
. . .} denote the partial feedback se-

quences for the pulls of an arm i started at time steps
t1, t2, . . . and delays D1, D2, . . . with bias bi. Then, un-
der the distributional assumptions on the partial feed-
back (see Section 2) for any F ∈ N\{1}, P ∈ [1, DF ],
δf > 0, δp > 0, δb > 0, we have with probability
1− δf − δp − δb:∣∣∣∣∣∣ 1

F

F−1∑
f=1

Xi,tf +
1

P

P∑
p=1

(Yi,tF+p − Zi,F )

− µi
∣∣∣∣∣∣

≤ C (σi, F, δf/n) +
1

F

[
C
(
σ

(p)
i , P, δp/n

)
+ C

(
σ

(p)
i , F − 1, δb/n

)]
(6)

∀i ∈ [1, n]where Zi,F =
1

F − 1

F−1∑
f=1

(∑Df−1
p=1 Yi,tf+p

Df − 1
−Xi,Df−1

)
.

Comparing Eq. (6) with Eq. (5) by constraining δ =
δf + δp + δb, we see that the mean estimator takes into
account the partial feedback as before but also has a
bias correction term. The bias correction term is an
empirical average of the biases observed from the past
full delayed feedback. This correction has the effect
of introducing additional uncertainty (third term in
the RHS) and we need at least one full feedback to
estimate the bias before we can use the above bound.
The corresponding racing algorithm runs similar to
Algorithm 2 with the key difference being that the
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Figure 1: Synthetic experiments evaluating performance. Top: sequential. Bottom: parallel. Lower is better.

mean estimator corresponds to the minimum of the
confidence bounds in Eq. (5) and Eq. (6), where the
RHS of Eq. (6) is specified for the optimal δ∗f , δ

∗
p , δ
∗
b

minimizing the expression under the constraint due
to δ. We defer the pseudocode for this setting to the
Appendix (see Algorithm 4).

4 PARALLEL MAB

In parallel MAB, an agent has the additional ability to
“accumulate” bulk information by controlling a batch
of arm pulls. We extend the (b, r) setting proposed in
Jun et al. [2016] where the agent is allowed to run at
most b arm pulls in parallel at any given time step with
an upper limit r on the number of pulls of each arm.

Even the full delayed feedback setting becomes inter-
esting, as the agent can exploit information from arm
pulls which have finished running in parallel to ac-
cept/reject delayed arm pulls that are still running
thereby avoiding the pitfalls of long delays. The pseu-
docode for the proposed batch racing algorithm with
full delayed feedback is given in Algorithm 3. At every
time step, an agent pulls a batch of arms with the
least pull count Ni that obeys the (b, r) constraints
(Lines 18-19). Whenever we obtain at least one full
delayed feedback, we can update our arm sets as per
the racing criteria (Lines 13-15).

The algorithms for the noisy partial feedback settings
discussed in Section 3 can be extended for parallel
MAB in a similar manner and are skipped here to keep
the presentation clean. The theoretical analysis of the
batch MAB setting in Jun et al. [2016] builds on the

analysis of standard MAB in ways independent of the
choice of LIL bounds and hence, a merged analysis for
delayed batch MAB using the LIL bounds for delayed
feedback (as in Propositions 1 and 2) suggests a reduc-
tion factor of b in the corresponding upper bounds.

5 EXPERIMENTS

We empirically validated the proposed algorithms on
a simulated setting and two real world datasets. All
experiments use an error probability of δ = 0.05 and we
observed that in each case, the algorithm obtains the
desired confidence level empirically. For the parallel
MAB setting, we set b = r = 10.

5.1 Simulated data

We performed an ablation study of the proposed algo-
rithms for sequential and parallel MAB under different
settings of delayed feedback. All experiments were
repeated for 100 random runs such that the standard
errors are vanishingly small and the number of top
arms to be identified, k is set to 0.2n. We quantify im-
provement as the ratio (=tpartial/tfull) of the time taken
by Algorithm 2 or its parallel MAB extension (i.e.,
tpartial) and the time taken by a full delayed feedback
racing procedure (i.e., tfull). We evaluate performance
as a function of the following problem parameters.

Number of arms. To analyze the difference in per-
formance as a function of the number of arms (n), we
further consider two distribution of means.
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(b) Parallel

Figure 2: Experiments on battery charging.

In the bounded means case, we set the means of the
arms as µi = c − (i/n)c̃ for any choice of constants c
and c̃ > 0. Hence, the range of the means does not vary
with n. In Figure 1a, we observe that accounting for
unbiased partial feedback can give gains of up to 25%
and 40% for the sequential and parallel MAB when the
number of arms is low. The gains are reduced when the
number of arms is large, which suggests that partial
feedback is less advantageous in scenarios where a large
number of full pulls are required for disambiguating
very closely spaced means.

In the free means case, we set the means of the arms
as µi = c− c̃i for any choice of constants c and c̃ > 0.
Here, the range of the means increases with n. From
the results in Figure 1b, we observe that the gains due
to partial feedback improve as the number of arms
increases. This suggests that when the relative separa-
tion in means between the arms is fixed, Algorithm 2
and its parallel MAB extension quickly eliminate arms
with extreme means (very high or very low) unlike the
racing algorithms that wait for full delayed feedback.

Delay. Here, we fix n = 100 and vary the delay of
the arms. For all settings of the delay in Figure 1c,
Algorithm 2 and its parallel MAB extension require a
significantly lower fraction of the time with the lowest
ratios observed to be 0.59 and 0.57 for sequential and

parallel MAB respectively. While we did not see much
variation in improvements for sequential MAB, the
improvements are better for longer delays in the case
of parallel MAB.

5.2 Policy search for fast battery charging

For any given battery chemistry, the charging (and
discharging) policy has a significant impact on the life-
time of the cells. However, a single run of a particular
policy however takes months to complete since every
cell needs to be repeatedly charged and discharged
until the end of its lifetime. Hence, delayed feedback
can significantly slow down the search procedure. The
true, unknown reward for any arm (charging policy)
is stochastic and corresponds to the lifetime of the
battery [Harris et al., 2017, Baumhöfer et al., 2014,
Schuster et al., 2015].2

We model the search for the best charging policy for
the Li-ion battery chemistry as a best arm identifica-
tion problem in a stochastic MAB with n = 40 arms,
k = 1. The true mean cycle life, cell-to-cell variances,
and delays are obtained from a battery charging sim-
ulator [Moura et al., 2017, Perez et al., 2016]. While
a battery cell undergoes charging and discharging, we
can additionally monitor key indicators such as volt-
age, temperature, and internal resistance. Predictive
models of lifetime based on these factors is an active
area of research, and can serve the purpose of partial
feedback estimator [Burns et al., 2013, Dubarry et al.,
2017]. We assume the existence of such an estimator
and test the robustness of our algorithm by evaluating
the relative improvements obtained from Algorithm 2

on varying the noise σ
(p)
i associated with the partial

feedback. The results are shown in Figure 2. When the

estimator is “trustworthy” (low σ
(p)
i ), we can achieve

improvements of up to 35% in the number of experi-
ments required. As expected, the gains diminish for
poorer models of partial feedback in which case the
algorithm can choose to ignore the noisy feedback.

5.3 Hyperparameter optimization for mixed
integer programming

The CPLEX solver3 for mixed integer programming
has a host of hyperparameters, including options to
switch on or off different cut strategies employed by
the solver during the search process. We model the
task of finding the best cut strategy as a stochastic
MAB problem with n = 32 arms (i.e., cut strategies),

2Formally, the lifetime of the cell is defined to be the
number of cycles until a battery reaches 80% of its original
capacity at which point a battery is considered dead.

3https://www.ibm.com/software/commerce/
optimization/cplex-optimizer/index.html

https://www.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
https://www.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
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k = 1. The performance is measured on CORLAT, a
benchmark set of 2, 000 (maximization) mixed integer
linear programming instances derived from real world
data used for the construction of a wildlife corridor for
grizzly bears in the Northern Rockies region [Gomes
et al., 2008, Hutter et al., 2010]. The true mean for each
arm is the average of lower bounds attained by the cut
strategy on the feasible instances in the dataset under
specified time and resource constraints per instance (10
seconds on 1 core). Every pull of an arm corresponds to
running a cut strategy on a sampled problem instance.

Instead of waiting for the solver to completely solve
(or time out) a sampled problem instance, we can save
computation by using partial feedback about the search
process. In particular, the solver outputs the best in-
tegral lower bound (LB) and real valued upper bound
(UB) found after executing each cut during search. The
final output of the solver is the best lower bound. To
obtain an unbiased partial feedback estimator, we use
a training subset of 500 instances to learn a linear
model that predicts the final lower bound for a given
input instance based on the intermediate lower and
upper bounds. The best arm identification algorithms
are tested on the remaining instances in the dataset.
Conditioned on a problem instance, the uncertainty

associated with the partial feedback, σ
(p)
i is given by

(UB −LB)/2 and shrinks with an increase in the time
steps elapsed. Note that the delays are not fixed and
depend on both the cut strategy and the problem in-
stance under consideration. We directly report the final
results: the percentage reduction in time taken by the
unbiased partial feedback scenarios over full delayed
feedback is 80.8% and 87.6% for sequential and parallel
MAB respectively stressing the importance of partial
feedback for this particular application scenario.

6 RELATED WORK

Early work in pure exploration is attributed to Bech-
hofer [1958] and Paulson [1964] who studied this prob-
lem in the context of optimal experimental design.
Modern day literature can be categorized into either
the fixed budget or the fixed confidence settings. Algo-
rithms for the fixed budget setting strive to maximize
the probability of identifying the top-k arms [Audibert
and Bubeck, 2010, Bubeck et al., 2013, Kaufmann et al.,
2015]. In the fixed confidence setting, which is the one
we consider in this paper, the goal is to minimize the
number of pulls to attain a target confidence [Maron
and Moore, 1994, Bubeck et al., 2009]. See Gabillon
et al. [2012] for a unified treatment of the two settings.

Algorithms for the fixed confidence setting can be
broadly classified into racing style procedures which
sample arms uniformly and eliminate sub-optimal

arms [Maron and Moore, 1994, Even-Dar et al., 2002]
and the UCB/LUCB style procedures which adaptively
sample arms without explicit elimination. We direct the
reader to the excellent survey by Jamieson and Nowak
[2014] that summarizes the major advancements in the
analysis of the sample complexity of these algorithms.
Algorithmic generalizations of the best arm identifica-
tion include top-k identification [Heidrich-Meisner and
Igel, 2009] and the parallel MAB settings for batch arm
pulls [Perchet et al., 2015, Jun et al., 2016, Wu et al.,
2015] among others.

While the delayed feedback framework we propose is
novel to the pure exploration problem, online learning
with delays has been studied previously in the regret
minimization setting [Weinberger and Ordentlich, 2002,
Joulani et al., 2013, Desautels et al., 2014]. In particu-
lar, algorithms designed particularly for hyperparame-
ter optimization have enjoyed great success. Krueger
et al. [2015] proposes a modified cross-validation proce-
dure performed on increasing subsets of data coupled
with a sequential testing strategy to eliminate the poor
parameter configurations early on. Jamieson and Tal-
walkar [2016] and Li et al. [2017] recently proposed
algorithms for hyperparameter optimization based on
non-stochastic MAB. Here, the arms correspond to
hyperparameter configurations, and a pull is equivalent
to observing a fixed sequence of losses.

For many real-world problems, we have access to a
shared structure across arms that makes the over-
all problem amenable to Bayesian optimization tech-
niques [Snoek et al., 2012, Eggensperger et al., 2013,
Snoek et al., 2015, Feurer et al., 2015, McIntire et al.,
2016b,a]. Combining the LIL bounds we proposed
for noisy partial feedback with Bayesian multi-armed
bandits [Srinivas et al., 2010, Krause and Ong, 2011,
Hoffman et al., 2014] is a promising extension we are
pursuing for our on-going real world application relat-
ing to efficient search of fast charging policies for Li-ion
battery cells [Ermon et al., 2012].

7 CONCLUSIONS

We introduced a new general framework for pure ex-
ploration in stochastic multi-armed bandit problems
with partial and delayed feedback. We provided effi-
cient algorithms for solving specific instantiations of
our framework that can naturally model real world
scenarios, especially in the context of optimal experi-
mental design. We leave as future work the problem of
identifying information-theoretic lower bounds on the
sample complexity of the new pure exploration prob-
lems we formulated. Extension of our framework to
the fixed budget setting is another interesting direction
for future work.
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Appendices

A Unbiased noisy partial feedback

A.1 Proposition 1

Proof. By Lemma 1 applied to Xi,t1 , Xi,t2 , . . . for an arm i for F full delayed feedback, we have w.p. 1− δf/n:∣∣∣∣∣∣ 1

F

F∑
f=1

Xi,tf − µi

∣∣∣∣∣∣ ≤ C (σi, F, δf/n) . (7)

For any a, E[Yi,tF+p|Xi,tF = a] = a, and E[Yi,tF+p − a|Xi,tF = a] = 0. Conditioned on Xi,tF = a, (Yi,tF+p −
a)|(Xi,tF = a) is sub-Gaussian by assumption.

Therefore, conditioned on Xi,tF = a, by Lemma 1 applied to 1
P

∑P
p=1(Yi,tF+p|Xi,tF = a)−a for an arm i computed

using P partial feedback for the F -th pull, we have w.p. 1− δp/n:∣∣∣∣∣ 1

P

P∑
p=1

Yi,tF+p − a
∣∣∣∣∣ ≤ C (σ(p)

i , P, δp/n
)
. (8)

Given that the result does not depend on the value a, we have:∣∣∣∣∣ 1

P

P∑
p=1

(Yi,tF+p|Xi,tF )−Xi,tF

∣∣∣∣∣ ≤ C (σ(p)
i , P, δp/n

)
. (9)

From a union bound Eq. (7) and Eq. (9), we have w.p. 1− δf/n− δp/n:∣∣∣∣∣∣ 1

F

F−1∑
f=1

Xi,tf +
1

P

P∑
p=1

Yi,tF+p

− µi
∣∣∣∣∣∣ ≤ C (σi, F, δf/n) +

1

F
C
(
σ

(p)
i , P, δp/n

)
. (10)

Union bounding Eq.(10) over all arms, we have w.p. 1− δf − δp:∣∣∣∣∣∣ 1

F

F−1∑
f=1

Xi,tf +
1

P

P∑
p=1

Yi,tF+p

− µi
∣∣∣∣∣∣ ≤ C (σi, F, δf/n) +

1

F
C
(
σ

(p)
i , P, δp/n

)
∀i ∈ [1, n] (11)

finishing the proof.

A.2 Theorem 1

At any given time t ≥ 1, F ∈ N, P ∈ [1, DF ], we observe F − 1 full feedback, Xi,t1:F−1
for an arbitrary arm

i ∈ [1, n]. Accordingly, we have the following two cases to consider as per Algorithm 2.

• Case (a): C(σi, F − 1, δ/n) < C(σi, F, δ
∗
f/n) + 1

F C(σ
(p)
i , P, δ

∗
p/n)

µ̂i =
1

F − 1

F−1∑
f=1

Xi,tf

Ci = C (σi, F − 1, δ/n) .

• Case (b): otherwise

µ̂i =
1

F

F−1∑
f=1

Xi,tf +
1

P

P∑
l=1

Yi,tF+l


Ci = C(σi, F, δ

∗
f/n) +

1

F
C(σ

(p)
i , P, δ

∗
p/n).
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Define Ei = {∀t ≥ 1, |µ̂i − µi| ≤ Ci} be the event that the lower and upper confidence bounds of arm i trap the
true mean µi for all t ≥ 1 where µ̂i and Ci are chosen as described above at time t. Let St, At, Rt denote the set
of surviving, accepted, and rejected arms at time t. We can then state and prove the following lemma.

Lemma 2. Assume Ei holds for an arbitrary arm i ∈ St and i 6∈ St+1. Then, the following statements hold:

• i ∈ At+1 if i ≤ k.

• i ∈ Rt+1 if i > k.

Proof. By definition, St+1 ∪At+1 ∪Rt+1 = St. Recursing over t, t− 1, ...0, we note that St+1 ∪At+1 ∪Rt+1 =
{1, 2, . . . , n}. Since the lemma assumes that arm i 6∈ St+1, either i ∈ At+1 or i ∈ Rt+1.

We will prove the first statement of the lemma by contradiction. For an arbitrary i ≤ k, let us assume i ∈ Rt+1.

This implies that UCBi < max
(k)
j∈St LCBj . Since by assumptions on the lemma the lower and upper confidence

bounds of any arm trap its true mean, we have UCBi ≥ µi and max
(k)
j∈St LCBj ≤ µk. Hence, we obtain µi < µk

which is a contradiction since i ≤ k. The second statement holds true by symmetry.

Since both Proposition 1 and Eq. (5) hold true w.p. at least 1− δ/n for all arms, we get that ∩ni=1Ei holds true
w.p. at least 1− δ (union bound) regardless of the set of {µ̂i}ni=1 and {Ci}ni=1 picked by the algorithm. Combining
the union bound with Lemma 2, the algorithm outputs the top-k set w.p. at least 1− δ if it terminates.

B Biased noisy partial feedback

B.1 Proposition 2

Proof. By Lemma 1 applied to Xi,t1 , Xi,t2 , . . . for an arm i for F full delayed feedback, we have w.p. 1− δf/n:∣∣∣∣∣∣ 1

F

F∑
f=1

Xi,tf − µi

∣∣∣∣∣∣ ≤ C (σi, F, δf/n) . (12)

For any a, E[Yi,tF+p|Xi,tF = a] = a + bi, and E[Yi,tF+p − a − bi|Xi,tF = a] = 0. Conditioned on Xi,tF = a,
(Yi,tF+p − a− bi)|(Xi,tF = a) is sub-Gaussian by assumption. Therefore, conditioned on Xi,tF = a, by Lemma 1

applied to 1
P

∑P
p=1 (Yi,tF+p − bi)−Xi,tF for the (incomplete) F -th pull of an arm i with P partial feedback, we

have w.p. 1− δp/n: ∣∣∣∣∣ 1

P

P∑
p=1

(Yi,tF+p − bi)−Xi,tF

∣∣∣∣∣ ≤ C (σ(p)
i , P, δp/n

)
. (13)

Now, consider the F − 1 random variables for all f ∈ [1, F − 1]:∑Df−1
p=1 Yi,tf+p

Df − 1
−Xi,f . (14)

The random variables in (14) are all sub-Gaussian with mean bi and scale parameter σ
(p)
i . Hence, applying LIL

on these random variables conditioning on bi, we have w.p. 1− δb/n:∣∣∣∣∣∣ 1

F − 1

F−1∑
f=1

(∑Df−1
p=1 Yi,tf+p

Df − 1
−Xi,Df−1

)
− bi

∣∣∣∣∣∣ ≤ C
(
σ

(p)
i , F − 1, δb/n

)
. (15)

From a union bound of Eq. (12) and Eq. (13), we have w.p. 1− δf/n− δp/n:∣∣∣∣∣∣ 1

F

F−1∑
f=1

Xi,tf +
1

P

P∑
p=1

(Yi,tF+p − bi)

− µi
∣∣∣∣∣∣ ≤ C (σi, F, δf/n) +

1

F
C
(
σ

(p)
i , P, δp/n

)
. (16)
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Algorithm 4 RacingBiasedPF (arm parameters {i, σi, σ(p)
i }ni=1, top k, confidence δ)

1: Initialize global time step t = 0, surviving S = {i}ni=1, accepted A = {}, rejected R = {}.
2: Initialize per-arm full delayed feedback counter Fi = 0, empirical means µ̂i = 0, confidence bounds LCBi =
−∞, UCBi =∞ for all i ∈ S.

3: while S is not empty do
4: while True do
5: Increment t← t+ 1.
6: Collect partial feedback Ya,t.
7: Update µ̂(p) using Ya,t as per Proposition 2.
8: Increment P ← P + 1.

9: Set C(partial) ← C (σa, Fa + 1, δ
∗
f/n) + 1

Fa+1

[
C
(
σ

(p)
a , P, δ

∗
p/n
)

+ C
(
σ

(p)
a , Fa, δ

∗
b/n
)]

10: Choose FOrP← arg min
(
C(σa, Fa, δ/n), C(partial)

)
.

11: Update Ca ← C(σa, Fa, δ/n) if FOrP = F else C(partial).

12: Update µ̂a ← µ̂(f) if FOrP = F else Faµ̂
(f)+µ̂(p)

Fa+1 .
13: Update LCBa, UCBa.
14: A,R, S ← UpdateArmSets(A,R, S, k, {LCBi, UCBi)}i∈S).
15: if P = Da,ta or a 6∈ S then
16: Break . Pull on termination/elimination
17: end if
18: end while
19: Pull arm a where a← arg mina∈S Fa.
20: Initialize start ta ← t, partial feedback counter P = 0, partial mean µ̂(p) = 0, full mean µ̂(f) ← µ̂i.
21: end while
22: return A

From a union bound of Eq. (15) and Eq. (16), we have w.p. 1− δf/n− δp/n− δb/n:∣∣∣∣∣∣ 1

F

F−1∑
f=1

Xi,tf +
1

P

P∑
p=1

Yi,tF+p −
1

F − 1

F−1∑
f=1

(∑Df−1
p=1 Yi,tf+p

Df − 1
−Xi,Df−1

)− µi
∣∣∣∣∣∣

≤ C (σi, F, δf/n) +
1

F
C
(
σ

(p)
i , P, δp/n

)
+

1

F
C
(
σ

(p)
i , F − 1, δb/n

)
. (17)

Finally, union bounding Eq. (17) over all arms, we have w.p. 1− δf − δp − δb:∣∣∣∣∣∣ 1

F

F−1∑
f=1

Xi,tf +
1

P

P∑
p=1

Yi,tF+p −
1

F − 1

F−1∑
f=1

(∑Df−1
p=1 Yi,tf+p

Df − 1
−Xi,Df−1

)− µi
∣∣∣∣∣∣

≤ C (σi, F, δf/n) +
1

F
C
(
σ

(p)
i , P, δp/n

)
+

1

F
C
(
σ

(p)
i , F − 1, δb/n

)
∀i ∈ [1, n] (18)

finishing the proof.

B.2 Algorithm

We provide the pseudocode for the racing procedures with biased partial feedback in Algorithm 4. As discussed
previously, the algorithm is similar to Algorithm 2 with key differences in the mean and confidence bound
estimators in Line 7 and Line 9 respectively.
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